Local Expert Forest of Score Fusion for Video Event Classification

نویسندگان

  • Jingchen Liu
  • Scott McCloskey
  • Yanxi Liu
چکیده

We address the problem of complicated event categorization from a large dataset of videos “in the wild”, where multiple classifiers are applied independently to evaluate each video with a ‘likelihood’ score. The core contribution of this paper is a local expert forest model for meta-level score fusion for event detection under heavily imbalanced class distributions. Our motivation is to adapt to performance variations of the classifiers in different regions of the score space, using a divide-and-conquer technique. We propose a novel method to partition the likelihood-space, being sensitive to local label distributions in imbalanced data, and train a pair of locally optimized experts each time. Multiple pairs of experts based on different partitions (‘trees’) form a ‘forest’, balancing local adaptivity and over-fitting of the model. As a result, our model disregards classifiers in regions of the score space where their performance is bad, achieving both local source selection and fusion. We experiment with the TRECVID Multimedia Event Detection (MED) dataset, detecting 15 complicated events from around 34k video clips comprising more than 1000 hours, and demonstrate superior performance compared to other score-level fusion methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

A fusion scheme of visual and auditory modalities for event detection in sports video

In this paper, we propose an effective fusion scheme of visual and auditory modalities to detect events in sports video. The proposed scheme is built upon semantic shot classification, where we classify video shots into several major or interesting classes, each of which has clear semantic meanings. Among major shot classes we perform classification of the different auditory signal segments (i....

متن کامل

Informedia@TRECVID 2011: Surveillance Event Detection

This paper presents a generic event detection system evaluated in the Surveillance Event Detection (SED) task of TRECVID 2011 campaign. We investigate a generic statistical approach with spatio-temporal features applied to seven event classes, which were defined by the SED task. This approach is based on local spatio-temporal descriptors, which is named as MoSIFT and generated by pair-wise vide...

متن کامل

Learning from Multiple Experts with Random Forests: Application to the Segmentation of the Midbrain in 3D Ultrasound

In the field of computer aided medical image analysis, it is often difficult to obtain reliable ground truth for evaluating algorithms or supervising statistical learning procedures. In this paper we present a new method for training a classification forest from images labelled by variably performing experts, while simultaneously evaluating the performance of each expert. Our approach builds up...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012